
Early metrics for Object Oriented Designs

Boris Baldassari, Chantal Robach

LCIS, INP Grenoble

50, rue Barthélémy de Laffemas

26000 Valence, France

boris.baldassari, chantal.robach@esisar.inpg.fr

Lydie du Bousquet

LSR, ENSIMAG

681, rue de la passerelle

38402 Saint Martin d’Hres — France

lydie.du-bousquet@imag.fr

Josiane Brosse

Thalès-Avionics

25 rue Jules Védrines

26000 Valence — France

josiane.brosse@thales-avionics.com

Abstract

To produce high quality object-oriented systems, a

strong emphasis on the development process is necessary.

This implies two implicit and complementary goals. First,

to ensure a full control over the whole process, enabling ac-

curate costs and delays estimation, resources efficient man-

agement, and a better overall understanding. Second, to im-

prove quality all along the system lifecycle at development

and maintenance stage. On the client side, a steady control

over the development process implies a better detection and

elimination of faults, raising the fiability and usability of the

system.

This paper introduces a realistic example of metrics inte-

gration in the development process of object-oriented soft-

ware. By addressing early stages of the design (ie. class di-

agram), we can anticipate design-level errors or warnings

thus enabling a reduction of immediate and further costs

and problems. Metrics used are issued from state of the art

object-oriented research, and integrated in the widespread

unified process of software development.

1. Introduction

Although some advances have been made in software en-

gineering over last years [2, 8, 23], large software projects

are still difficult to manage, often involving supplementary

costs and delays. As developed in [18, 21], now that we

are able to build important software edifices1, we still have

1Parallels with the architecture science are common and relevant – see

[21]

to learn how to build them well, in order to achieve better

productivity and better quality.

Both these goals heavily depend on the development pro-

cess, and the control developers have on it. More specifi-

cally, design and testing issues are the most cost and time-

effective: while modifying a bad implementation is still

allowed at the testing stage, design problems may be pro-

hibitly cost- and delays-expensive, and may remain until

the maintenance stage. These issues are even more critical

in object-oriented paradigm, since this approach has been

introduced years later.

In this paper, we present a method to anticipate such

problems using object-oriented metrics at the design step.

The originality of the approach is to propose testability and

design targeted metrics application at steps where informa-

tion is scarce (class diagrams), and to make them consistent

altogether. By addressing early stages of the development

process, we are able to ensure quality and testability at the

design level.

First, we will briefly present in section 2 context ba-

sis with a short presentation of software quality engineer-

ing and object-oriented paradigm. In section 3, we exam-

ine the unified process of software development, and state

where improvement attempts would be efficient. Section 4

presents metrics defined for object-oriented designs, and the

theoretical and pratical aspects of the measures.

We propose a reduced set of metrics, an adaptation of

them and an example of their integration in the unified de-

velopment process in section 5.

Finally, we conclude in section 6.

2. Context basis

2.1. Elements of Software Quality

The software quality engineering notion covers many as-

pects, all along the software lifecycle. On the developer’s

side, quality is the way to costs and delays accurate esti-

mation, easier testing, better maintenability. One may ar-

gue that quality should be quantifiable prior to improvement

[25]. Indeed, software quality notions are often associated

with software metrics, and therefore dependent upon it.

2.2. The Object­Oriented Model

Object-Oriented approach has been introduced 35 years

ago, with languages such as Simula (1967) and SmallTalk

(1980) [18]. Since, engineers and researchers have been

able to design and build complex systems, and gain experi-

ence and maturity. The maturity of the concept, however, is

not currently achieved and, as stated in [21] and [18], will

not be until we gain enough experience. However, such an

area comes lately with the introduction of reflexion groups

and increase of specialized knowledge in software indus-

tries.

Although there are common aspects between classic and

object-oriented paradigms, authors have underlined differ-

ences from many points of view: development process

[4, 8], metrics [6, 23], testing [2] or design [10]. Amongst

others, the introduction of new features (data abstraction,

encapsulation, inheritance, polymorphism, self-recursion,

depending on languages) induces new bug hazards, new

fault model, and moreover new design, analysis, test and

metrics methodolgies.

Object-oriented paradigm focuses on architecture rather

than on a sequential execution, thus raising the importance

of the former. [5, 14] and [6], amongst others, address such

issues and propose metrics targeted at architecture.

3. Object-Oriented sofware development

Developing the Object-oriented maturity implies the def-

inition of a formalism for system modeling, data exchanges

and process control. This is accomplished by the Unified

Modeling Language (UML) [11, 13], which furnishes a way

to visually represent, formalize and exchange system archi-

tectures and artefacts. Although some ambiguity have been

found in definitions, UML is widely adopted by the object-

oriented community and thus considered as a de facto stan-

dard.

There are many ways to build an object-oriented sys-

tem. The software development process has been greatly

improved over the years, providing developpers with guide-

lines and references: OOSE [12], Booch [3], OMT [20],

Use-Case writing [7, 12].

3.1. Presentation of the Unified Process

The Unified Process of software development [11] is a

capture of best practices [8], taking advantages from three

of the main used development processes (OOSE [12], OMT

[20], Booch [3]). This paternity gives it a long-breath expe-

rience and maturity. Technically, it is an iterative and incre-

mental, use-case driven, architecture-centric development

process, targeted at object-oriented systems [4, 8]. Each

iteration is broken into four parts, as shown in figure 1.

Figure 1. Steps of the Unified Process

• The requirements step describes what the system

should do and allows developers and customers to

agree on this description. To achieve this, functionnal-

ities and constraints are elicited, organized and docu-

mented; actors and use cases, as well, are identified

and commented.

• The analysis & design step deals with how the sys-

tem will be implemented, given the consistent view ob-

tained at the previous step. This results in an analysis

model, which represents an abstraction of the software

without any technical constraint, and a design model,

which acts as a ’blueprint’ of how the source code is

structured and written.

• The implementation phase uses the defined design

model to implement classes and objects in terms of

components. Unit testing is also accomplished during

this step.

• The purpose of the testing stage is to verify interac-

tions between objects, proper integration of all compo-

2

nants, correct implementation of all requirements, and

defects detection.

This development process has been widely adopted by

Object-Oriented developers, and the majority of software

development platform proposals include a development

process based on the Unified one [9, 8]. Many, if not all,

large object-oriented software projets use it as a guideline.

Our solution, for the two reasons given above (ie. ma-

turity and industrial-wide use), has been dedicated to the

unified process.

3.2. Early stages attempts

The unified process, by the formalism it introduces,

makes clear distinctions between the different phases (eg.

the design model is mandatory before the implementation

phase). Formalism is very important for software engineer-

ing, since it reduces human errors and clarify the project’s

advance.

Any improvement attempt has to take place as soon as

possible [19]: if modifications are needed at the imple-

mentation stage, changes costs may be prohibitively high.

Besides, some changes involving structure alterations just

can’t be made without a complete overhaul. On the other

hand, some minimal information is required to appraise

software quality, and the more accurate these informations

are, the more accurate metrics are too.

A compromise has to be found between earliness and

completeness; the majority of metrics suites actually used

address the later, often needing at least some code. Al-

though this is undoubtedly a good approach, we specifically

want to address analysis and design issues sooner in the pro-

cess, thus reducing costs and delays.

4. Software quality metrics

4.1. Background

Considering a large scope, software engineering and

quality issues are as old as 40 years; classical paradigms

have carefully been studied, and many metrics have been

proposed.

Software metrics address several aspects of quality: from

algorithmic complexity to fault-proneness and testability

(ie. the facility to conduct tests on the software).

Amongst the classics, McCabe [15] proposes an algo-

rithmic complexity measure based on an graph analysis of

the program structure. Although this has become a refer-

ence for further studies, limits of the concept have been

early reached and critized [22]. Indeed, this measure is con-

fined to pure algorithmic complexity, which make it usefull

for weighting of some metrics — eg. for WMC in Chi-

damber and Kemerer metrics suite.

Voas has proposed in [24] a metric targeted specifically

at testability: the PIE (Propagation, Infection, Execution)

approach. This metric quantifies the probability of a fault to

appear, to be executed and to be seen. The interesting point

here is the focus on faults and their consequences.

Other measures from the classical (ie. sequential)

paradigm are based on similar principles; most of the

metrics targeted at classical programs do not address ar-

chitecture aspects, which are essential in object-oriented

paradigm – and the one to be available at a early stage.

Amongst object-oriented software metrics, many ad-

dress the implementation stage, with measure items such

as the number of lines in the code, the number of attributes

[5, 6] or the complexity of methods [15, 17]. Although these

metrics are recognized as relevant and actualy correlated to

fault-proneness, they require an advanced state of develop-

ment — ie. the implementation stage.

4.2. Class level information

One of the first suites of Object-Oriented design mea-

sures was proposed by Chidamber and Kemerer [6]. This

work, widely considered as the foundation of Object-

Oriented metrics, proposes a strong mathematical base —

which was an aspect often criticized in other proposed

suites. These metrics are:

1. Weighted Methods per Class (WMC): the weighted

sum of all methods in a class.

2. Depth of Inheritance Tree (DIT): maximum length

from the class to the root in the inheritance tree.

3. Number of Children (NOC): number of directly inher-

ited classes.

4. Coupling Between Object classes (CBO): count of the

number of other classes coupled to the considered

class.

5. Response For a Class (RFC): number of methods that

can potentially be invoked by a message received by

an object of the considered class.

6. Lack of Cohesion in Methods (LCOM): number of

methods using the same set of attributes minus the

number of methods using a different set of attributes.

Subramanyam [23], ten years later, discusses the rele-

vance of these metrics confronted to the industrial and re-

search feedback. A majority of them is considered to be ac-

tually correlated to fault-prononess; although the size factor,

which is under-estimated in Chidamber and Kemerer work,

appears to have a great impact. Applied on large systems

3

(ie. more than 500.000 lines of code), only coupling and

inheritance metrics are still relevant.

From these observations, Subramanyam proposes a re-

duced set of metrics consisting of WMC (Weighted Meth-

ods per Classes), CBO (Coupling Between Objects), DIT

(Depth of Inheritance Tree) and a size measure, not included

in Chidamber proposal.

4.3. Package level information

R. Martin proposes in [14] a set of metrics to measure

the quality of an object-oriented design in terms of interde-

pendences between subsystems. From an UML perspective,

the author examines relations between packages, and their

implication on the design quality.

A highly interdependent design (ie. with several rela-

tions between packages) tends to be rigid, and therefore

difficult to reuse, modify and maintain. On the other hand,

packages have to collaborate in order to deliver services —

otherwise, they’re useless. So there are good dependencies,

and bad dependencies, given their quantities, the stability of

packages involved, etc.

R. Martin proposes four metrics:

• Ca (Afferent Coupling) is the number of classes out-

side the category (ie. package) that depend upon

classes within the category. It represents the use of

the considered category by others.

• Ce (Efferent Coupling) is the number of classes inside

the category that depend upon classes outside the cate-

gory. The Ce metric represents the dependency of the

considered category upon the outside.

• I (Instability) is calculated with the Ca and Ce met-

rics, and stands in the [0,1] range. I = 0 indicates a

maximally stable category, and I = 1 indicates a max-

imally instable category.

I =
Ce

Ca + Ca

• Stable categories should be highly abstract so that it

can be extended; the A (Abstractness) metrics, ranged

in [0,1], provides such a measure.

A =
of abstract classes in the category

total # of classes in category

Categories with a high Ca are not to be changed, since

this will result in a cascade of failed dependencies. Cate-

gories with a high Ce will be harder to test, since we will

have to put in place all dependencies before.

However, having a very stable or instable category is

not always good or bad: this depends on the nature of the

category, its role and the fonctionnalities it offers. A low-

level category will be intensively used by others, and there’s

nothing bad with it; all we have to ensure is the adequation

between the role and the fact. To fulfill this goal, R. Mar-

tin provides a gabarit, whose abstractness is ‘balanced’ with

stability.

This suite of metrics has the merit to address package-

related issues, since most, if not all, of other metrics rather

address class or algorithmic issues.

4.4. Other studies

There are a few other studies providing object-oriented

metrics; amongst these, we can cite Abreu [5], Subra-

manyam [23], Morris [16]. Although these are interesting

approaches, the concepts remain identical to earlier studies,

with some algorithmic complexity and class-level analysis.

Given the little amount of information we own at concep-

tion stage, they provide no supplementary element.

5. Metrics selection and integration

5.1. Selection of metrics

Following [1] and [19], we focus on Analysis and Design

stage, in order to adress early architectural issues. There is

a strong requirement to fulfil: given the early stage of the

measure, we do have a fairly low amount of information.

Typically, we are restricted to general structure informa-

tions, such as those provided on a simple and concise class

diagram. We consider only the following minimal require-

ments:

• Classes and packages are defined, but neither methods

definition nor any attribute is needed. Thus, metrics

involving number of lines of code, or algorithmic com-

plexity are not available.

• Relations (ie. associations, compositions, aggregations

and inheritance) are known, but neither stereotypes,

nor adornments (ie. cardinality, orientation, etc.) are

needed.

Amongst the presented metrics, we have selected three

class-related and four package-related metrics. Considering

information is scarce, we have to exploit it to the maximum,

in order to address all levels of available information (class

and package).

At the class level, these metrics are the CBO, the DIT

and the NOC metrics. They all are considered to be size-

independent and confirmed by industrial experience [23],

and available at an early stage of design.

At the package level, selected metrics are the Ca, the

Ce and the I metrics. We also add a size metrics given by

4

the number of classes in a package. Industrial experience,

gained through several object-oriented projects at Thalès

Avionics, has proven the relevance of these metrics in the

way provided by [14] and [23].

5.2. Implementation

We have used, for metrics calculation, an existing soft-

ware named UML Checker, developed by Thalès Avionics

for internal purposes.

UML Checker takes as an input a Rhapsody or a

Rose project file, and compute several metrics from

[5, 6, 14]. The output is a classic XML file, which we trans-

form into a HTML file for the user’s convenience.

Presentation of resulting metrics is of central impor-

tance, since we have to make it relevant to the developer

in an efficient manner. Amongst metrics provided by stan-

dard development environments, many cannot be exploited

since they do not provide a consistent and useable view. We

favoured a better navigability though results using hyper-

links, thus enabling a better overall view of the architecture

and its measures.

5.3. Results and validation

This metric suite has been applied on a industrial object-

oriented project at Thalès Avionics, developed with Ada95.

This project is medium-sized with 358 classes and 55 pack-

ages, and constitutes a typical object-oriented development

project.

Using this suite of metrics, we have been able to predict

and identify, with the development team of the project:

• Heavily inherited elements, ie. with a high DIT value

for the considered class and several high NOC amongst

its ancestors. Such large and high inheritance trees be-

come dangerous when they are associated with an im-

portant complexity (CBO).

• Connectivity-related problems, such as over-

associated classes and packages, which lead to

design misunderstandings and testing problems.

Connectivity issues are revealed by high values of

CBO, Ce and/or Ca. For classes, CBO is closely

connected to inheritance metrics; at package level, Ce

is a direct measure of testing difficulty.

• Nature of elements, and semantic errors. For example,

classes with a high number of children are base-objects

(eg. the Object object in Java). Such classes are heav-

ily instanciated and derived, but there’s nothing bad

about it, as long as these, and only these, are known

and identified. If a direct correspondance between se-

mantic (ie. what classes are supposed to do) and facts

(ie. what metrics reveal) cannot be established, the in-

volved parts of the design are faulty.

6. Conclusion

Our goal in this paper was to introduce, rather than a

specific measure usage, a realistic exemple of metrics un-

derstanding and integration in an industrial context. By se-

lecting only relevant information, we keep a steady control

on the system and its development process while complex-

ity grows.

Selected metrics and statistics usage provide us with an

overall view of the whole system, thus enabling us to fo-

cus particularly on problematic parts. We focus on archi-

tectural and design issues, because of their importance later

in the development process, and the costs and delays they

can generate if they are faulty. Quality attributes considered

are mainly fault-proneness and complexity.

Software quality engineering requires, indeed, such the-

oretical and pragmatic work, but also a wide quality im-

provement process in software companies, and the devel-

opment of fault models adapted to each industrial context,

which has yet to be integrated in metrics suites in an effi-

cient manner.

References

[1] B. Baudry, Y. Le Traon, and G. Suny. Testability analysis of

a uml class diagram. In 8th International Software Metrics

Symposium (Metrics 2002), IRISA, Campus Universitaire de

Beaulieu, 35042 Rennes Cedex, France, jun 2002.
[2] R. V. Binder. Testing Object-Oriented Systems – Models,

Patterns and Tools. The Addison-Wesley object technology

series. Addison-Wesley, Oct. 1999.
[3] G. Booch. Object-Oriented Design with Applications. Red-

wood City, CA: Benjamin/Cummings, 1991.
[4] G. Booch, I. Jacobson, and J. Rumbaugh. The Unified Soft-

ware Development Process. Addison-Wesley, Feb 1999.
[5] F. Brito e Abreu. Toward the Design Quality Evaluation of

Object-Oriented Software Systems. In Proceedings of the

5th International Conference on Software Quality, Austin,

Texas, USA, Oct 1995.
[6] S. Chidamber and C. Kemerer. A Metrics Suite for Object

Oriented Design. IEEE Transactions on Software Engineer-

ing, 20(6):476–493, 1994.
[7] A. Cockburn. Writing Effective Use Case. Addison-Wesley

Longman Publishing Co., Inc., Oct 2000.
[8] R. S. Corporation. Rational Unified Process: best

practices for software development teams, 2001.

http://www.rational.com/media/whitepapers/.
[9] D. H. Eran Gery and E. Palachi. Rhapsody: A Complete

Life-Cycle Model-Based Development System. Technical

report, I-Logix, 2001.
[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Elements

of Reusable Object-Oriented Software. Addison-Wesley,

1994.

5

[11] O. M. Group. Unified modeling language. Spec-

ification v1.3, Object Management Group, June 1999.

http://www.omg.org/technology/uml/.

[12] I. Jacobson, M. Christerson, P. Jonsson, and G. ’́Overgaard.

Object-Oriented Software Engineering: A Use Case Driven

Approach. Addison–Wesley, 1992.

[13] C. Larman. Applying UML and Patterns: An Introduction to

Object-Oriented Analysis and Design and the Unified Pro-

cess – Second edition. Prentice Hall, Jul 2001.

[14] R. Martin. OO Design Quality Metrics : an Analysis of

Dependencies. Intranet Thales-avionics, 1994.

[15] T. McCabe. A Complexity Measure. IEEE Transactions on

Software Engineering, SE-2(4):308–320, Dec 1976.

[16] K. Morris. Metrics for Object-Oriented Software Develop-

ment Environments. Master’s thesis, M.I.T. Sloan School of

Management, 1989.

[17] B. A. Nejmeh. Npath: a measure of execution path com-

plexity and its applications. Communications of the ACM,

31(2):188–200, Feb 1988.

[18] L. B. S. Raccoon. Fifty years of progress in software en-

gineering. ACM SIGSOFT Software Engineering Notes,

22(1):88–104, 1997.

[19] D. Richardson and A. L. Wolf. Software Testing at the Ar-

chitectural Level. In Proc. of the Second Inter. Software Ar-

chitecture Workskip, pages 68–71, San Fransisco, Califor-

nia, USA, October 1996. ACM.

[20] J. R. Rumbaugh, M. R. Blaha, W. Lorensen, F. Eddy, and

W. Premerlani. Object-Oriented Modeling and Design.

Prentice-Hall, Oct 1991.

[21] M. Shaw. Prospects for an Engineering Discipline of Soft-

ware. IEEE Software, 7(6):15–24, Nov. 1990.

[22] M. Shepperd. A critique of cyclomatic complexity as a soft-

ware metric. Software Engineering Journal, 3(2):30–36,

Mar 1988.

[23] R. Subramanyam and M. Krishnan. Empirical Analysis of

CK metrics for Object-Oriented Design Complexity : Im-

plications for Software Defects. IEEE Transactions on Soft-

ware Engineering, 29(4):297–310, Apr 2003.

[24] J. M. Voas. PIE: A Dynamic Failure-Based Technique. IEEE

Transactions on Software Engineering, 18(8):717–727, Aug

1992.

[25] E. Weyuker. Evaluating Software Complexity Measures.

IEEE Transactions on Software Engineering, 14:1357–

1365, 1988.

6

