
Understanding Software Evolution:
The Maisqual Ant Data Set

Boris Baldassari
SQuORING Technologies

Toulouse, France
boris.baldassari@squoring.com

Philippe Preux
SequeL, LIFL, CNRS, INRIA

Université de Lille, France
philippe.preux@univ-lille3.fr

ABSTRACT
Software engineering is a maturing discipline which has seen
many drastic advances in the last years. However, some
studies still point to the lack of rigorous and mathemati-
cally grounded methods to raise the field to a new emerging
science, with proper and reproducible foundations to build
upon. Indeed, mathematicians and statisticians do not nec-
essarily have software engineering knowledge, while software
engineers and practitioners do not necessarily have a math-
ematical background.
The Maisqual research project intends to fill the gap be-

tween both fields by proposing a controlled and peer-reviewed
data set series ready to use and study. These data sets fea-
ture metrics from different repositories, from source code
to mail activity and configuration management meta data.
Metrics are described and commented, and all the steps fol-
lowed for their extraction and treatment are described with
contextual information about the data and its meaning.
This article introduces the Apache Ant weekly data set,

featuring 636 extracts of the project over 12 years at dif-
ferent levels of artefacts – application, files, functions. By
associating community and process related information to
code extracts, this data set unveils interesting perspectives
on the evolution of one of the great success stories of open
source.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics

General Terms
Measurement

Keywords
Data mining, Software Engineering, Software Metrics

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
MSR’14 May 31 – June 7, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2863-0/14/05 ...$15.00.

1. INTRODUCTION
In the last 30 years, software has become ubiquitous both

in the industry (from Internet to business intelligence to
supply chain automation) and in our daily lives. As a con-
sequence, characteristics of software such as reliability, per-
formance or maintainability have become increasingly im-
portant – either for stakeholders, developers, or end-users.
Research on software metrics was introduced a long time
ago to help and support the field, but despite some remark-
able advances there are still many critics (most notably from
Fenton [5] and Kaner [8]) as to the scientific approach and
overall mathematical rigour needed to build scientific meth-
ods.
Most of the studies that cover software engineering con-

cerns use their own retrieval process and work on unpub-
lished, non-verifiable data. This fact definitely influences
the credibility of studies, and lends credence to criticism
about the relevance, reproducibility and usability of their
conclusions. As an alternative, authors may rely on public
data sets like the Comets, Helix or Promise series. The pro-
posed data set intends to establish a bedrock for upcoming
studies by providing a consistent and peer-reviewed set of
measures associated to various and unusual characteristics
extracted from heterogeneous sources: mails, configuration
management and coding rules. It provides a set of metrics
gathered on a long-running, real-world project, and states
their definitions and requirements. It is designed to be easily
imported to any statistical program.
In Section 2, we describe the structure and contents of

the data set, and give information on the project history.
Section 3 enumerates the various types of measures retrieved
and how they are integrated, and Section 4 lists the coding
rules checked on code. Section 5 proposes a few examples of
usage for the data set. Finally, we state our on-going and
future work regarding these concerns in Section 6.

2. DATA SET DESCRIPTION

2.1 The Ant Project
The early history of Ant begins in the late nineties with

the donation of the Tomcat software from Sun to Apache.
From a specific build tool, it evolved steadily through Tom-
cat contributions to be more generic and usable. James
Duncan Davidson announced the creation of the Ant project
on the 13 January 2000, with its own mailing lists, source
repository and issue tracking.
There have been many versions since then: 8 major re-

leases and 15 updates (minor releases). The data set ends in

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

MSR’14, May 31 – June 1, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2863-0/14/05...$15.00
http://dx.doi.org/10.1145/2597073.2597136

424

Table 1: Major releases of Ant.
Date Version SLOC Files Functions
2000-07-18 1.1 9671 87 876
2000-10-24 1.2 18864 171 1809
2001-03-02 1.3 33347 385 3332
2001-09-03 1.4 43599 425 4277
2002-07-15 1.5 72315 716 6782
2003-12-18 1.6 97925 906 9453
2006-12-19 1.7 115973 1113 12036
2010-02-08 1.8 126230 1173 12964

July 2012, and the last version officially released at that time
is 1.8.4. Table 1 lists major releases of Ant with some char-
acteristics of official builds as published. It should be noted
that these characteristics may show inconsistencies with the
data set, since the build process extracts and transforms a
subset of the actual repository content.
Ant is arguably one of the most relevant examples of a suc-

cessful open source project: from 2000 to 2003, the project
attracted more than 30 developers whose efforts contributed
to nominations for awards and to its recognition as a reli-
able, extendable and well-supported build standard for both
industry and the open source community.
An interesting aspect of the Ant project is the amount

of information available on the lifespan of a project: from
its early beginnings in 2000, activity had its climax around
2002-2003 and then decreased steadily. Although the project
is actively maintained and still brings regular releases the list
of new features is decreasing with the years. It is still hosted
by the Apache Foundation, which is known to have a high
interest in software product and process quality.

2.2 Structure of the Data Set
The complete data set is a consistent mix of different

levels of information corresponding to the application, files
and functions artefact types. Hence three different subsets
are provided. The application data set has 159 measures
composed of 66 metrics and 93 rules extracted from source
code, configuration management and communication chan-
nels. Each record is a snapshot of the application. The files
data set has 123 measures composed of 30 metrics and 93
rules extracted from source code and configuration manage-
ment. Each record is a Java file with the .java extension.
The functions data set has 117 measures composed of 24
metrics and 93 rules extracted from source code only, of
which each record is a Java function with its arguments.

Table 2: Sizing information for the CSV data sets.
App File Func

Size of flat files 312KB 232MB 2.4GB
Size of compressed files 68KB 12MB 89MB
Number of records 636 654 696 6 887 473

Each data set is composed of 636 exports of the Ant
project, extracted on the Monday of every week since the
beginning of the project until end of July, 2012. The for-
mat of the files is plain text CSV and the separator used
for all data sets is ! (exclamation mark). Some key sizing
information is provided in table 2.

2.3 Retrieval Process
Data is retrieved from the project’s official repositories:

• Source code is extracted from the Subversion reposi-
tory’s trunk at specific dates. Only files with a .java
extension have been analysed. Code metrics are com-
puted using SQuORE [2], and rules violations are ex-
tracted from SQuORE, Checkstyle [9, 3] and PMD [1,
4].

• Configuration management metadata is extracted from
Subversion’s svn log -v command executed on trunk
and parsed with custom scripts.

• Communication measures are computed from the mail-
ing lists’ archives in mbox format.

To ensure consistency between all artefact measures we
rely on SQuORE, a professional tool for software project
quality evaluation and business intelligence [2]. It features
a parser, which builds a tree of artefacts (application, files,
functions) and an engine that associates measures to each
node and aggregates data to upper levels. Users can write
custom parsers to analyse specific types of data sources,
which we did for the analysis of configuration management
and communication channels.

3. METRICS
The measures presented here are intended as real-world

data: although they have been cross-checked for errors or in-
consistencies, no transformation has been applied on values.
As an example, the evolution of line counting metrics shows
a huge peak around the beginning of 2002 due to some con-
figuration management large-scale actions which impacted
many metrics. We deliberately kept raw data because this
was actually the state of the subversion repository at that
time.
Migrations between tools often make it difficult to rely on

a continuous measure of the characteristics. Some informa-
tion of the former repository may not have been included or
wrongly migrated, and the meaning of metadata may have
heavily differed depending on the tool. An example of such
issues lies in erroneous dates of migrated code in the new
configuration management system.
Another point is there may be a huge difference between

the source code of an official release and the actual con-
figuration management state at the release time. The build
and release process often extracts and packages source code,
skipping some files and delivering other (potentially dynam-
ically generated) information and artefacts. As an example,
the common metrics shown in table 1 for Ant official releases
cannot be confirmed by the repository information available
in the data set.
The set of metrics for each artefact type is shown in tables

3, 4 and 5. Some metrics are available only at specific lev-
els – e.g. distinct number of operands in a function, while
others are available on more than one level – e.g. SCM
Commits. Please note that the relationship between levels
varies: summing line counts on files gives the line count at
the application level, which is not true for commits – since a
commit often includes several files. Practioners should check
ecological inference[11] to reduce bias when playing with the
different levels of information.

425

3.1 Source Code
Most source code measures are borrowed from the liter-

ature: artefact- and line-counting metrics have their usual
definition1, vg is from McCabe [10], dopd, dopt, topd,
topt are from Halstead [7]. ladd, lmod and lrem are
differential measures that respectively count the number of
lines added, modified and removed since last analysis.
Some of the metrics considered have computational rela-

tionships among themselves. They are:

sloc = eloc + brac
lc = sloc + blan + cloc − mloc
lc = (eloc + brac) + blan + cloc − mloc

comr = ((cloc + mloc) × 100)/(eloc + cloc))

Table 3: Source code metrics.
Metric name Mnemo App File Func
Blank lines blan X X X
Braces lines brac X X X
Control flow tokens cft X X X
Number of classes clas X X X
Comment lines of code cloc X X X
Comment rate comr X X X
Depth of Inheritance
Tree

ditm X

Distinct operands dopd X
Distinct operators dopt X
Effective lines of code eloc X X X
Number of files file X
Number of functions func X X
Lines added ladd X X X
Line count lc X X X
Lines modified lmod X X X
Lines removed lrem X X X
Mixed lines of code mloc X X X
Non Conformities ncc X X X
Maximum nesting nest X
Number of parameters nop X
Number of paths npat X
Acquired practices rokr X X X
Source lines of code sloc X X X
Number of statements stat X X X
Number of operands topd X
Number of operators topt X
Cyclomatic number vg X X X

3.2 Configuration Management
All modern configuration management tools propose a log

retrieval facility to dig into a file history. In order to work on
several different projects, we needed to go one step further
and define a limited set of basic information that we could
extract from all major tools (e.g. CVS, Subversion, Git):
number of commits (scm_commits), committers (scm_-
committers), and files committed (scm_commits_files,
including any file type and directories). The scm_fixes
measure counts the number of commits that have one of fix,
1A complete definition of the metrics is available on
the Maisqual web site: maisqual.squoring.com/wiki/-
index.php/Ant_data_set.

issue, problem or error keywords in their associated commit
message.

Table 4: SCM metrics.
Metric name Mnemo (scm_* App File Func
SCM Fixes fixes X X
SCM Commits commits X X
SCM Committers committers X X
SCM Commit. Files commit_files X

Measures are proposed in four time frames, by counting
events that occured during last week (scm_*_1w), during
last month (scm_*_1m), during last three months (scm_-
*_3m), and since the beginning of the project (scm_*_-
total). These enable users to better grasp recent varia-
tions in the measures, and give different perspectives on its
evolution. Configuration management metrics are listed in
table 4.

3.3 Communication Channels
Open-source projects usually have at least two mailing

lists: one for technical questions about the product’s devel-
opment itself (i.e. the developer mailing list) and another
one for questions relative to the product’s usage (i.e. the
user mailing list). Historical data was extracted from old
mbox archives, all of which are available on the project web
site.

Table 5: Communication metrics.

Metric name A
pp

Fi
le

Fu
nc

Number of authors in developer ML X
Median response time in developer ML X
Volume of mails in developer ML X
Number of threads in developer ML X
Number of authors in user ML X
Median response time in user ML X
Volume of mails in user ML X
Number of threads in user ML X

Available measures are the number of distinct authors2,
the volume of mails exchanged on the mailing list, the num-
ber of different threads, and the median time between a
question and its first answer on the considered time frame.
These measures are proposed in three time frames spanning
on last week (com_*_1w), last month (com_*_1m) and
the last three months (com_*_3m) of activity. Communi-
cation metrics are listed in table 5.

4. RULES
Rules are associated to coding conventions and practices.

They deliver substantial information on the local customs
in use in the project, and are usually linked to specific
characteristics of quality. In the data sets, conformity to
rules is displayed as a number of violations of the rule (non-
conformity count or ncc) for the given artefact.
Many of these rules are linked to coding conventions pub-

lished by standardisation organisms like CERT (Carnegie
2Distinct authors have different email adresses; no persona
unification has been achieved on the data set.

426

Mellon’s secure coding instance), which usually give a rank-
ing on the remediation cost and the severity of the rule.
There are also language-specific coding conventions, as is
the case with Sun’s coding conventions for the Java pro-
gramming language [12].

4.1 SQuORE Rules
We identified 21 rules from SQuORE 2013-C, targeting

the most common and harmful coding errors. Examples
of checked rules include fall-through in switch cases, miss-
ing default, backwards goto, and assignment in condition.
The following families of rules are defined: fault tolerance
(2 rules), analysability (7 rules), maturity (1 rule), stability
(10 rules), changeability (12 rules) and testability (13 rules).
The full rule set is described on the Maisqual project wiki3.

4.2 Checkstyle Rules
We identified 39 rules from the Checkstyle 5.6 rule set,

corresponding to useful practices generally well adopted by
the community. The quality attributes impacted by these
rules are: analysability (23 rules), reusability (11 rules), re-
liability (5 rules), efficiency (5 rules), testability (3 rules),
robustness (2 rules) and portability (1 rule). All rules are
described on the Checkstyle web site4.

4.3 PMD Rules
We selected 58 rules from the PMD 5.0.5 rule set. These

are related to the following quality attributes: analysability
(26 rules), maturity (31 rules), testability (13 rules), change-
ability (5 rules), and efficiency (5 rules). The full rule set is
documented on the PMD web site5.

5. POSSIBLE USES OF THE DATA SET
The introduction of data mining techniques in software

engineering is quite young, and there is still a vast field
of possibilities to explore. Data may be analysed from an
evolutional or static perspective by considering either a time
range or a single version. Since the different levels of data
(application, file and function) are altogether consistent, one
may as well consider studying relationships between them,
or even the evolution of these relationships with time.
Communication and configuration management metrics

give precious insights into the community’s activity and pro-
cess related behaviour in development. Time-related mea-
sures (ladd, lmod, lrem, *_1w, *_1m, *_3m) are useful
to grasp the dynamics of the project’s evolution. Since rule
violations are representative of coding practices, one may
consider the links between the development practices and
their impact on attributes of software.
The Maisqual project itself investigates the application of

statistical techniques to software engineering data and relies
on this data set series. Examples of usages are provided on
the Maisqual web site, including evolution of metrics with
time (e.g. time series analysis), analysis of coding rule viola-
tions, and basic exploration of a single version of the project
(e.g. clustering of artefacts, principal components analysis).
We recommend the use of literate analysis tools like Swea-

ve [6] and Knitr [13], which allow practitioners to embed R

3See http://maisqual.squoring.com/wiki/index.php/Rules.
4See http://checkstyle.sourceforge.net/config.html.
5See http://pmd.sourceforge.net/pmd-5.0.5/rules/.

code chunks into LATEX documents. These dynamic docu-
ments can then be safely applied to many sets of data with
a similar structure to easily reproduce results of an analysis
on a large amount of data. Another added value of literate
data analysis is to situate results in a semantic context, thus
helping practitioners and end-users to understand both the
computation and its results.

6. SUMMARY AND FUTURE WORK
The contribution of the data set presented here is twofold:

firstly the long time range (12 years) spans from the very
beginning of the project to an apogee of activity and to
a stable state of maturity. Secondly, the introduction of
unusal metrics (rule violations, configuration management,
mailing lists) at different levels opens new perspectives on
the evolution of software, the dynamics of its community,
the coding and configuration management practices.
Next versions of this data set will include new metrics,

gathered on new sources (e.g. bug tracking system), with
new data types (e.g. boolean, categorical) to foster usage
of different algorithms working on non-numerical data. New
projects will also be added from the open-source community
(GCC, JMeter).

7. REFERENCES
[1] N. Ayewah, W. Pugh, D. Hovemeyer, J. D.

Morgenthaler, and J. Penix. Using static analysis to
find bugs. IEEE Software, 25(5):22–29, 2008.

[2] B. Baldassari. SQuORE: A new approach to software
project quality measurement. In International
Conference on Software & Systems Engineering and
their Applications, Paris, France, 2012.

[3] O. Burn. Checkstyle, 2001.
[4] D. Dixon-Peugh. PMD, 2003.
[5] N. Fenton. Software Measurement: a Necessary

Scientific Basis. IEEE Transactions on Software
Engineering, 20(3):199–206, Mar. 1994.

[6] Friedrich Leisch. Sweave. Dynamic generation of
statistical reports using literate data analysis.
Technical Report 69, SFB Adaptive Information
Systems and Modelling in Economics and
Management Science, Vienna, 2002.

[7] M. H. Halstead. Elements of Software Science.
Elsevier Science Inc., 1977.

[8] C. Kaner and W. P. Bond. Software engineering
metrics: What do they measure and how do we know?
In 10th International Software Metrics Symposium,
METRICS 2004, pages 1–12, 2004.

[9] P. Louridas. Static Code Analysis. IEEE Software,
23(4):58–61, 2006.

[10] T. McCabe. A complexity measure. Software
Engineering, IEEE Transactions on, (4):308–320,
1976.

[11] D. Posnett, V. Filkov, and P. Devanbu. Ecological
inference in empirical software engineering. In
Proceedings of the 2011 26th IEEE/ACM International
Conference on Automated Software Engineering, pages
362–371. IEEE Computer Society, Nov. 2011.

[12] Sun. Code Conventions for the Java Programming
Language. Technical report, 1999.

[13] Y. Xie. Knitr: A general-purpose package for dynamic
report generation in R. Technical report, 2013.

427

