
SQuORE and the quality
of software development

Boris Baldassari,
Université de Lille 3, Lille, France

boris.baldassari@gmail.com

1 Introduction

Software quality is a common subject among practitioners and users of software products. But
although it generates a great deal of discussion and interest, quality assurance is often not well
understood, nor considered worth investing in by managers and developers. As of today, many
people still consider it a hazardous and expensive part of the art of development.

Bad quality has a price however, or rather, many cost factors. Firstly, there are the costs that can
easily be estimated such as when a single bug shuts down a whole server or system, interrupts
transactions, make a flying module explode. Secondly there are the costs hidden in the maintenance
of the product which are more difficult to estimate. The former are well-known and quite
impressive: the explosion of the Ariane 5 shuttle (500M$), the AT&T network crash (60M$ traced
back to a missing break), or the destruction of the Mars Climate Observer space module. The latter
costs are less visible, but have far greater impact: each and every software project has its own debt,
with the associated recurring interest.

In this article, we propose a few ideas to help the practitioner define the objectives and requirements
of quality, how to setup a quality evaluation process, and how to implement it using SQuORE1, a
multi-purpose tool used for the evaluation of software projects.

2 A few words about quality

Defining quality

To state it up front, there is no single definition of quality that fits every domain and every person.
When it comes to software development, the most often cited definitions target customer
satisfactiona, fitness for purposeb, and conformance to requirementsc. In real life situations the
concept depends on the chosen perspective – e.g. stakeholder, developer, or end-user – and on the
domain – the requirements are not the same for a critical embedded system as they are for a desktop
text editor.

From this we propose to define, or redefine, what quality is in every specific context, following the
perspectives on quality enumerated by Garvind, to adapt the measurement and analysis process to
the specific requirements and needs of the situation.

1 http://www.squoring.com/en/

Measuring quality

Another great pitfall is the pertinence of measures of software characteristics: how do we know that
we measure what we really intend to, what is the semantic and accuracy shift introduced, and what
impact does the method have on the measure itself? Several authors worked on this concern
(Fentone, Kanerf, Pfleegerg), demonstrating how devastating or inaccurate a metric can be if badly
measured or understood, and proposing hints to avoid the most common issues.

One good example of this is how to measure productivity: some use the number of lines of code
written, but this has a bad side effect: files often end up being artificially long, for mediocre quality
(since people know they will be judged for the length, not the content). For the same reasons,
maintainability or reliability do not depend directly on the size or complexity of the code base,
although they are highly correlated. The former typically depends on the population of developers
(experience, background) and the conventions used in the project. The latter can hardly be estimated
through the number of bugs entered in the issue tracking system, because there is no proven
relationship between the number of bugs entered and the real number of bugs inside the product: if
a product provides an easy way to report bugs, there will be more bugs entered in the issue tracking
system, which will be identified and corrected, thus patently improving reliability. On the other
hand a product which has not been thoroughly tested will have a small number of registered bugs,
but will undoubtedly be less mature and reliable.

The main approach used today is multi-dimensional analysis: attributes of quality are estimated
through a large set of software measures, which are then weighted and aggregated to form a
comprehensive result. These measures have to be understood and accepted by the various actors of
the development process, and using methods like Basili's Goal-Question-Metric approach helps to
preserve the semantic and consistency of the measurement process.

Quality Models

When it comes to measuring several characteristics of a product or process, one has to analyse and
decompose the main definition of quality and refine it in sub-characteristics called attributes of
quality. These represent various aspects and concerns of the system under analysis, like support
reactivity, predictability of outputs, readability or stability of code. Figure 1 illustrates such a
quality model derived from the ISO 9126 standard, defining its main characteristics and sub-
characteristics down to the computation of base measures.

Within a same company, different services may, and will, have different requirements of quality, and
will probably measure it via different means: e.g. number of shipped and returned products,
customer satisfaction, and sales results. Thus different quality models, serving different purposes,
may co-exist in the organisation. They may well have different quality attributes, weights, measures
and aggregation methods.

As an answer to these various requirements and perspectives on quality, a comprehensive amount of
standards have been published to help practitioners express and structure their views. Examples
include ISO 15504 (Spice) and CMMi for process evaluation, and SQUALE, ISO 9126 and ISO
250xx (SQuaRE) for product quality. These standards bring a safe foundation to build upon, with
clear definitions of terms, a normalised structure for the evaluation, and even propose in some cases
a method and recommendations to help people setup the quality evaluation process.

Furthermore a great ecosystem contributes to the maturity of the domain, with abundant literature
and documentation (usage, criticism, discussions) around these standards, and a comprehensive
offering of services (audit or counsel).

3 SQuORE

SQuORE aims to provide a ready-to-use quality assessment
framework that can be entirely configured for the distinctive
features of a given process. Several quality models are
provided out-of-the-box, following the structure of
established standards like ISO 9126 or the technical debt.
Starting from such safe roots, one can then tune the quality
model, add or remove measurement inputs to fit the data and
requirements for the company.

Figure 1: A product-oriented quality model (SQuORE)

Illustration 2: The SQuORE notation

SQuORE Quality Models

SQuORE uses modular and reusable XML configuration
files to describe the structure of the quality model and the
aggregation method used to sum measures up to the
quality attributes. Thus it is easy to add a new quality
attribute (say customer support reactivity) and its
computation method (based, say, on the mean time to first
answer and a satisfaction survey).

A comprehensive set of operators is available to compute
measures at different levels, from functions up to files,
folders, applications, department or service. This allows
administrators to customise the quality model to fit the
unique cultural environment of the company. Figure 4
presents an example of project-oriented quality model,
composed of three custom axes: product, community, and
process.

Types of data

SQuORE has its own multi-language analyser for source code analysis, and generates the usual
code metrics: size, complexity, Halstead measures, and object-oriented metrics like the depth of
inheritance tree. But SQuORE's main strength is its ability to connect to the outside world. It can
execute a rule-checking tool (like CheckStyle, PMD, FindBugs, Coverity, or Polyspace) or a custom
Perl script, and parse its output to include its results in the quality report. All standard formats are
supported: CSV, JSON, XML, and even data bases. This feature allows to include unusual types of
data from various areas of the development process and environment: tests, requirements, or the
number of shipped products.

Action Items

Action items (AI) are defined by a combined set of thresholds on various metrics. They allow to
identify complex patterns, relying on several conditions, and generate warnings accordingly. As an
example, consider a long file (high SLOC) with a low comment rate and several practices violated
inside. Each of these characteristics are not really harmful considered individually, but have a
devastating effect when combined. For each action item SQuORE provides a clear explanation of
the problem with the associated threshold values, and proposes pragmatic improvement steps.

Visualisation

At the end of the process, end-users have to really understand the results of the analysis and the way
it is conducted, to take corrective actions that really matter. Pictures are often worth a thousand
words, and there is a good graphic for every concern. Time series show the evolution of a pathology
and help understand how things have evolved to produce the actual situation (figure 4, left).
Scatterplots are helpful to identify abnormal and extreme values. Control graphs make visible the
complexity of a function or a file (figure 4, right).

Illustration 3: An example of project quality
breakdown.

Using nice and useful visualisation serves two main purposes. Firstly for the end users: they have to
understand what the evaluation means for them and what good and bad practices it involves, and
also how to improve it all. Secondly for managers to monitor effectively the project, forecast its
behaviour and anticipate upcoming difficulties.

This last link of the chain has a fundamental importance, because the whole process is pointless if
the users can not understand and use the results, and if there is no pragmatic and visible
improvement in the project's quality. This also increases the confidence in the measurement and
analysis process, demonstrates the benefits of the quality assurance program, and justifies further
investment.

4 Conclusion

In this article we presented some fundamental concepts of a software quality assessment and
improvement program, from measurement to the structure of the quality model. Most common
issues have been presented, along with means to solve them. We also presented the basic principles
of SQuORE, and how it can be successfully used in the context of a specific quality assurance
program.

As a conclusion, one should not look for a universally accepted definition of software quality,
neither for a panacea to software development problems. Each and every situation has its own
quality requirements, measures, and cultural and domain biases. Nevertheless, by carefully
reviewing the quality requirements and constraints of projects, by setting up meaningful measures,
and by involving the users of the analysis process in its definition so they really understand what is
measured and how, one will not only have a sound measurement process but will also be able to
pro-actively help improve it according to the selected axes.

Illustration 4: Examples of visualisation (SQuORE)

a Deming, W. E. (1988). Out of the crisis: quality, productivity and competitive position. Cambridge University
Press.

b Juran, J. M., Godfrey, A. B., Hoogstoel, R. E., & Schilling, E. G. (1999). Juran’s Quality Handbook (Vol. 2).
McGraw Hill New York.

c Crosby, P. B. (1979). Quality is free: The art of making quality certain (Vol. 94). McGraw-Hill New York.
d Kitchenham, B., & Pfleeger, S. (1996). Software quality: the elusive target. IEEE Software, 13(1), 12–21.
e Fenton, N., & Pfleeger, S. (1991). Software metrics.
f Kaner, C., & Bond, W. P. (2004). Software engineering metrics: What do they measure and how do we know?

Methodology, 8(6), 1–12.
g Fenton, N., & Pfleeger, S. (1998). Software metrics: a rigorous and practical approach. Brooks/Cole Pub Co.

	1 Introduction
	2 A few words about quality
	Defining quality
	Measuring quality
	Quality Models

	3 SQuORE
	SQuORE Quality Models
	Types of data
	Action Items
	Visualisation

	4 Conclusion

